61 research outputs found

    In vivo microdialysis to determine subcutaneous interstitial fluid penetration and pharmacokinetics of fluconazole in intensive care unit patients with sepsis

    Get PDF
    The objective of the study was to describe the subcutaneous interstitial fluid (ISF) pharmacokinetics of fluconazole in critically ill patients with sepsis. This prospective observational study was conducted at two tertiary intensive care units in Australia. Serial fluconazole concentrations were measured over 24 h in plasma and subcutaneous ISF using microdialysis. The concentrations in plasma and microdialysate were measured using a validated high-performance liquid chromatography system with electrospray mass spectrometer detector method. Noncompartmental pharmacokinetic analysis was performed. Twelve critically ill patients with sepsis were enrolled. The mean in vivo fluconazole recovery rates +/- standard deviation (SD) for microdialysis were 51.4% +/- 16.1% with a mean (+/- SD) fluconazole ISF penetration ratio of 0.52 +/- 0.30 (coefficient of variation, 58%). The median free plasma area under the concentration-time curve from 0 to 24 h (AUC(0-24)) was significantly higher than the median ISF AUC(0-24) (340.4 versus 141.1 mg . h/liter; P = 0.004). There was no statistical difference in median fluconazole ISF penetration between patients receiving and not receiving vasopressors (median, 0.28 versus 0.78; P = 0.106). Both minimum and the maximum concentrations of drug in serum (C-max and C-min) showed a significant correlation with the fluconazole plasma exposure (Cmax, R-2 = 0.86, P < 0.0001; Cmin, R-2 = 0.75, P < 0.001). Our data suggest that fluconazole was distributed variably, but incompletely, from plasma into subcutaneous interstitial fluid in this cohort of critically ill patients with sepsis. Given the variability of fluconazole interstitial fluid exposures and lack of clinically identifiable factors by which to recognize patients with reduced distribution/exposure, we suggest higher than standard doses to ensure that drug exposure is adequate at the site of infection

    Effect of obesity on the population pharmacokinetics of meropenem in critically ill patients

    Get PDF
    Severe pathophysiological changes in critical illness can lead to dramatically altered antimicrobial pharmacokinetics (PK). The additional effect of obesity on PK potentially increases the challenge for effective dosing. The aim of this prospective study was to describe the population PK of meropenem for a cohort of critically ill patients, including obese and morbidly obese patients. Critically ill patients prescribed meropenem were recruited into the following three body mass index (BMI) groups: nonobese (18.5 to 29.9 kg/m(2)), obese (30.0 to 39.9 kg/m(2)), and morbidly obese (>= 40 kg/m(2)). Serial plasma samples were taken, and meropenem concentrations were determined using a validated chromatographic method. Population PK analysis and Monte Carlo dosing simulations were undertaken with Pmetrics. Nineteen critically ill patients with different BMI categories were enrolled. The patients' mean +/- standard deviation (SD) age, weight, and BMI were 49 +/- 15.9 years, 95 +/- 22.0 kg, and 33 +/- 7.0 kg/m(2), respectively. A two-compartment model described the data adequately. The mean +/- SD parameter estimates for the final covariate model were as follows: clearance (CL), 15.5 +/- 6.0 liters/h; volume of distribution in the central compartment (V-1), 11.7 +/- 5.8 liters; intercompartmental clearance from the central compartment to the peripheral compartment, 25.6 +/- 35.1 liters h(-1); and intercompartmental clearance from the peripheral compartment to the central compartment, 8.32 +/- 12.24 liters h(-1). Higher creatinine clearance (CLCR) was associated with a lower probability of target attainment, with BMI having little effect. Although obesity was found to be associated with an increased V-1, dose adjustment based on CLCR appears to be more important than patient BMI

    Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds

    Get PDF
    Introduction: The aim of this study was to explore changes in glomerular filtration (GFR) and renal tubular function in critically ill patients at risk of augmented renal clearance (ARC), using exogenous marker compounds

    Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients

    Get PDF
    The treatment of infections in critically ill obese and morbidly obese patients is challenging because of the combined physiological changes that result from obesity and critical illness. The aim of this study was to describe the population pharmacokinetics of piperacillin in a cohort of critically ill patients, including obese and morbidly obese patients. Critically ill patients who received piperacillin-tazobactam were classified according to their body mass index (BMI) as nonobese, obese, and morbidly obese. Plasma samples were collected, and piperacillin concentrations were determined by a validated chromatographic method. Population pharmacokinetic analysis and Monte Carlo dosing simulations were performed using Pmetrics software. Thirty-seven critically ill patients (including 12 obese patients and 12 morbidly obese patients) were enrolled. The patients' mean ± standard deviation age, weight, and BMI were 50 ± 15 years, 104 ± 35 kg, and 38.0 ± 15.0 kg/m(2), respectively. The concentration-time data were best described by a two-compartment linear model. The mean ± SD parameter estimates for the final covariate model were a clearance of 14.0 ± 7.1 liters/h, a volume of distribution of the central compartment of 49.0 ± 19.0 liters, an intercompartmental clearance from the central compartment to the peripheral compartment of 0.9 ± 0.6 liters · h(-1), and an intercompartmental clearance from the peripheral compartment to the central compartment of 2.3 ± 2.8 liters · h(-1) A higher measured creatinine clearance and shorter-duration infusions were associated with a lower likelihood of achieving therapeutic piperacillin exposures in patients in all BMI categories. Piperacillin pharmacokinetics are altered in the presence of obesity and critical illness. As with nonobese patients, prolonged infusions increase the likelihood of achieving therapeutic concentrations

    Effect of obesity on the population pharmacokinetics of fluconazole in critically Ill patients

    Get PDF
    Our objective was to describe the population pharmacokinetics of fluconazole in a cohort of critically ill nonobese, obese, and morbidly obese patients. Critically ill patients prescribed fluconazole were recruited into three body mass index (BMI) cohorts, nonobese (18.5 to 29.9 kg/m(2)), obese (30.0 to 39.9 kg/m(2)), and morbidly obese (>= 40 kg/m(2)). Serial fluconazole concentrations were determined using a validated chromatographic method. Population pharmacokinetic analysis and Monte Carlo dosing simulations were undertaken with Pmetrics. Twenty-one critically ill patients (11 male) were enrolled, including obese (n = 6) and morbidly obese (n = 4) patients. The patients mean +/- standard deviation (SD) age, weight, and BMI were 54 +/- 15 years, 90 +/- 24 kg, and 31 +/- 9 kg/m(2), respectively. A two-compartment linear model described the data adequately. The mean +/- SD population pharmacokinetic parameter estimates were clearance (CL) of 0.95 +/- 0.48 liter/h, volume of distribution of the central compartment (V-c) of 15.10 +/- 11.78 liter, intercompartmental clearance from the central to peripheral compartment of 5.41 +/- 2.28 liter/h, and intercompartmental clearance from the peripheral to central compartment of 2.92 +/- 4.95 liter/h. A fluconazole dose of 200 mg daily was insufficient to achieve an area under the concentration-time curve for the free, unbound drug fraction/MIC ratio of 100 for pathogens with MICs of >= 2 mg/liter in patients with BMI of >30 kg/m(2). A fluconazole loading dose of 12 mg/kg and maintenance dose of 6 mg/kg/day achieved pharmacodynamic targets for higher MICs. A weight-based loading dose of 12 mg/kg followed by a daily maintenance dose of 6 mg/kg, according to renal function, is required in critically ill patients for pathogens with a MIC of 2 mg/liter

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore